Pattern Recognition in Biological Time Series

نویسندگان

  • Francisco Gómez-Vela
  • Francisco Martínez-Álvarez
  • Carlos D. Barranco
  • Norberto Díaz-Díaz
  • Domingo S. Rodríguez-Baena
  • Jesús S. Aguilar-Ruiz
چکیده

Knowledge extraction from gene expression data has been one of the main challenges in the bioinformatics field during the last few years. In this context, a particular kind of data, data retrieved in a temporal basis (also known as time series), provide information about the way a gene can be expressed during time. This work presents an exhaustive analysis of last proposals in this area, particularly focusing on those proposals using non–supervised machine learning techniques (i.e. clustering, biclustering and regulatory networks) to find relevant patterns in gene expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel grey–fuzzy–Markov and pattern recognition model for industrial accident forecasting

Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially ...

متن کامل

A Novel Fuzzy Based Method for Heart Rate Variability Prediction

Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...

متن کامل

Analyzing time series gene expression data

MOTIVATION Time series expression experiments are an increasingly popular method for studying a wide range of biological systems. However, when analyzing these experiments researchers face many new computational challenges. Algorithms that are specifically designed for time series experiments are required so that we can take advantage of their unique features (such as the ability to infer causa...

متن کامل

Fuzzy clustering of time series data: A particle swarm optimization approach

With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...

متن کامل

Improving pattern recognition of electronic nose data with time-delay neural networks

An enhanced time-delay neural network (TDNN), using time series sensor response data, improved pattern recognition ability of an electronic nose (e-nose) in discriminating four different spices. TDNN was used for analysis of e-nose time series sensor data from 0 to 4 min, while two popular pattern recognition methods, discriminant function analysis (DFA) and multilayer perceptron (MLP) trained ...

متن کامل

A Review of Subsequence Time Series Clustering

Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011